
Tutorial:
Classes, Objects & References

Nathaniel Osgood

CMPT 858

2-15-2011

Recall: Building the Model Right:
Some Principles of Software Engineering

Technical guidelines
• Try to avoid needless complexity

• Use abstraction & encapsulation to
simplify reasoning & development

• Name things carefully

• Design & code for transparency &
modifiability

• Document & create self-
documenting results where possible

• Consider designing for flexibility

• Use defensive programming

• Use type-checking to advantage
– Subtyping (and sometimes

subclassing) to capture commonality

– For unit checking (where possible)

Process guidelines
• Use peer reviews to review

– Code
– Design
– Tests

• Perform simple tests to verify
functionality

• Keep careful track of experiments
• Use tools for version control &

documentation & referent.integrity
• Do regular builds & system-wide

“smoke” tests
• Integrate with others’ work

frequently & in small steps
• Use discovery of bugs to find

weaknesses in the Q & A process

Recall: The Challenges of Complexity

• Complexity of software development is a
major barrier to effective delivery of value

• Complexity leads to systems that are late, over
budget, and of substandard quality

• Complexity has extensive impact in both
human & technical spheres

Recall: Why Modularity?
• As a way of managing complexity: Allows

decoupling of pieces of the system
– “Separation of Concerns” in comprehension &

reasoning

– Example areas of benefit
• Code creation

• Modification

• Testing

• Review

• Staff specialization

– Modularity allows ‘divide and conquer’ strategies to
work

• As a means to reuse

Recall: Abstraction: Key to Modularity
• Abstraction is the process of forgetting certain

details in order to treat many particular
circumstances as the same

• We can distinguish two key types of abstraction
– Abstraction by parameterization. We seek generality by

allowing the same mechanism to be adapted to many
different contexts by providing it with information on
that context

– Abstraction by specification. We ignore the
implementation details, and agree to treat as acceptable
any implementation that adheres to the specification

– [Liskov&Guttag 2001]

Recall: A Key Motivator for Abstraction:
Risk of Change

• Abstraction by specification helps lessen the
work required when we need to modify the
program

• By choosing our abstractions carefully, we can
gracefully handle anticipated changes

– e.g. Choose abstracts that will hide the details of
things that we anticipate changing frequently

– When the changes occur, we only need to modify
the implementations of those abstractions

Recall: Defining the “Interface”
• Knowing the signature of something we are

using is necessary but grossly insufficient

– If could count only on the signature of something
remaining the same, would be in tremendous
trouble: could do something totally different

– We want some sort of way of knowing what this
thing does

– We don't want to have to look at the code

• We are seeking a form of contract

• We achieve this contact through the use of
specifications

Recall: Types of Abstraction in Java

• Functional abstraction: Action performed on data
– We use functions (in OO, methods) to provide some

functionality while hiding the implementation details

– We previously talked about this

• Interface/Class-based abstraction: State & behaviour
– We create “interfaces”/“classes” to capture behavioural

similarity between sets of objects (e.g. agents)

– The class provides a contract regarding
• Nouns & adjectives: The characteristics (properties) of the

objects, including state that changes over time

• Verbs: How the objects do things (methods) or have things
done to them

Recall: Functional Abstraction

• Functional abstraction provides methods to do some
work (what) while hiding details of how this is done

• A method might

– Compute a value (hiding the algorithm)

– Test some condition (hiding all the details of exactly what
is considered and how): e.g. ask if a person is susceptible

– Perform some update on e.g. a person (e.g. infect a
person, simulate the change of state resulting from a
complex procedure, transmit infection to anther)

– Return some representation (e.g. a string) of or
information about a person in the model

Encapsulation: Key to Abstraction by
Specification

• Separation of interface from implementation (allowing
multiple implementations to satisfy the interface)
facilitates modularity

• Specifications specify expected behavior of anything
providing the interface

• Types of benefits
– Locality: Separation of implementation: Ability to build one

piece without worrying about or modifying another
• See earlier examples

– Modifiability: Ability to change one piece of project without
breaking other code

– Some reuse opportunities: Abstract over mechanisms that
differ in their details to only use one mechanism: e.g. Shared
code using interface based polymorphism

Two Common Mechanisms for
Defining Interfaces

• Interface alone: explicit java “interface”
constructs
– Interface defines specification of contract

– Interface provides no implementation

• Interface & implementation: Classes (using java
“class” construct)
– A class packages together data & functionality

– Superclasses provide interface & implementations

– Abstract classes as mechanism to specify contract &
define some implementation, but leave much of the
implementation unspecified

• We will focus on this

What is a Class?
• A class is like a mould in which we can cast particular

objects
– From a single mould, we can create many “objects”
– These objects may have some variation, but all share certain

characteristics – such as their behaviour
• This is similar to how objects cast by a mold can differ in many

regards, but share the shape imposed by the mould

• In object oriented programming, we define a class at
“development time”, and then often create multiple
objects from it at “runtime”
– These objects will differ in lots of (parameterized) details, but

will share their fundamental behaviors
– Only the class exists at development time

• Classes define an interface, but also provide an
implementation of that interface (code and data fields
that allow them to realized the required behaviour)

Fecall: A Critical Distinction:
Design (Specification) vs. Execution (Run) times

• The computational elements of Anylogic support
both design & execution time presence & behaviour

– Design time: Specifying the model

– Execution time (“Runtime”): Simulating the model

• It is important to be clear on what behavior &
information is associated with which times

• Generally speaking, design-time elements (e.g. in
the palettes) are created to support certain runtime
behaviors

Recall: A Familiar Analogy

• The distinction between model design time & model
execution time is like the distinction between

– Time of Recipe Design: Here, we’re

• Deciding what exact set of steps we’ll be following

• Picking our ingredients

• Deciding our preparation techniques

• Choosing/making our cooking utensils (e.g. a cookie cutter)

– Time of Cooking: When we actually are following the
recipe

• A given element of the recipe may be enacted many times
– One step may be repeated many times

– One cookie cutter may make many particular cookies

Cooking Analogy to an Agent Class:
A Cookie Cutter

• We only need one cookie cutter to bake many
cookies

• By carefully designing the cookie cutter, we can
shape the character of many particular cookies

• By describing an Agent class at model design time,
we are defining the cookie cutter we want to use

Familiar Classes in AnyLogic

• Main class

• Person class

• Simulation class

Work Frequently Done with Objects

• Reading “fields” (variables within the object)

• Setting fields

• Calling methods

– To compute something (a “query”)

– To perform some task (a “command”)

• Creating the objects

“Methods” to Call on (or from within,
using “this”) an Agent

• a.getConnectionsNumber() returns number of
connections between this agent and others

• a.get_Main() gets reference to Main object

• a.toString() gets string rendition of agent

• a.getConnections() gets a collection (linked) list of agents
to which this agent is connected (& over which we can
iterate)

• a.connectTo(Agent b) connects a to b

• a.disconnectFrom(Agent b) disconnects b from a

• a.disconnectFromAll() disconnects all agents from a

• a.getConnectedAgent(int i) gets the ith agent connected
to a

• a.isConnectedTo(Agent b) indicates if a is connected to b

Composition of Methods

• Suppose we have an agent called a

• a.getConnectedAgent(2).toString()
– This will print out the “name” of the 3rd agent to

which a is connected

• a.getConnectedAgent(0).getConnectionsNum
ber()
– This will print out the number of connections

possessed by the 1st agent to which a is connected

Distinction between Class and Object

• Sometimes we want information or actions that
only relates to the class, rather than to the
objects in the class

– Conceptually, these things relate to the mould,
rather than to the objects produced by the mould

– For example, this information may specify general
information that is true regardless of the state of an
individual object (e.g. agent)

– We will generally declare such information or
actions to be “static”

Java Variables include…

• “Parameters” (“Arguments”) to functions

• Local variables within a function

• Fields within a class

Values & References

• In Java, variables hold values

– It is the contents of these variables that is of interest –
variables themselves just store values

• There are many types of variables could be

– Parameters to a function

– “Local” (temporary) variables within a function

– Variables within a class (to be found in every object that
is “instantiated” from that class

– “Static” variables associated with a class (only one
variable associated with the class – no how many objects
of the class are circulating)

Broad Types of Java Values

• Primitive values

– Here, the value is directly stored in the variable

• int, double, float, etc.

• References

– Here, the value within the variable actually points
to either

• An object (could have many other references to it as
well!)

• A distinguished value “null” (means “doesn’t refer to
any object”)

Objects in Java

• Contain

– Data: “Fields”, “Property”

• These store information

– Behavior: “Methods”/”Functions”

• These allow the object to undertake certain
 tasks

fieldA [type:int]: 4
fieldB [type:doube]: 2.1

 a

Object can contain References to Other Objects

fieldA [type:int]: 4
fieldB [type:String]:

fieldC [type:MyClass2]:
 a

 “foo”

 fieldW [type:double]: 3.2

fieldY[type:int]: 2

Finding the Enclosing “Main” class
from an Embedded Agent

• From within an embedded Agent, one can find
the enclosing “Main” class by calling get_Main()

– This will give a reference to the single instance
(object) of the Main class in which the agent is
embedded

– An alternative approach is to call ((Main) getOwner)

Reference from Agent Class to Main Object

age[type:double]: 4.2
sex [type:Sex]: Male

 a

 Main
Object

get_Main() returns
This reference

(Sole Instance of Main
Class)

Assignment
• Consider two variables a and b that hold values

• Consider further the statement a=b

• How this is interpreted depends on the “type” of b

– If b is a “primitive” (e.g. int, double): Here, the
assignment will make a copy of that value

Before: a: 2, b: 4

 After: a:4, b:4

– If b holds a reference to an object, a will now hold a
reference to that same object

 After:

field: 4
a

b

Assignment
– If the programmer later modifies that object through a

that same change will be visible through b as well

•Before

•Assignment to a “field” (property”) of the object through

variable a

a.field=3

•After

field:3

a

b

field: 4
a

b

References Vs. Values

• The “type” of a variable indicates the sort of
data to which it can refer

• Looking at a variable’s type will tell you much
about how it can be used

– Whether primitive or reference

– Sort of operations that are possible on the data it
holds

Arrays

• Java supports collections called “Arrays”

– These store collections of values in an “indexed”
fashion

• By giving an “index”, we can get back an element

• These arrays can be of 1 or more “dimensions”

– An array of dimension 2 is just a (1D) array of
references to (1D) arrays

Example: Landscape Information

